## Sample Math 111 Final Exam Questions

- 1. Consider the linear equation: 4x + 3y 15 = 0
  - a. Put the equation in slope intercept form
  - b. State the slope
  - c. State the coordinate of the y-intercept
  - d. Give the exact coordinate for the x-intercept
  - e. Graph the line
- 2. Find the equation of a line passing through points: (-5,4) & (5,8)



3. Consider the data in the chart concerning the weight of channel iron

| Channel iron lengths and weights chart |         |         |         |         |
|----------------------------------------|---------|---------|---------|---------|
| Length (x)                             | 19 feet | 23 feet | 37 feet | 44 feet |
| Weight (y)                             | 152 lbs | 196 lbs | 336 lbs | 408 lbs |



- a. Find a linear model for the relationship by hand using the longest and shortest lengths.
- b. Use the regression function in your calculator to find a linear model (equation) for the relationship between length (x) and weight (y).
- c. Use the regression equation to predict the weight of a 62 foot length of channel iron.
- d. Use the regression equation to predict the length of channel iron weighing 784 lbs.
- 4. Solve the equation: 6.2(2x - 7) + 10.24 = 9 - 4(3x - 4.1)
- $3x-2 = \frac{2}{5} \frac{5x-2}{4}$ 5. Solve the equation:
- 6. Find the equation for the circle in standard form.



Change the equation of the circle to standard form:  $x^2 + y^2 - 8x + 14y + 29 = 0$ 7.

8. Find the equation for the ellipse in standard form.

- 9. Find exact zeros for the function  $f(x) = x^3 x^2 22x 8$
- 10. Solve (rounded to 2 decimal places): 12 4Ln (x-3) = 5
- 11. Calculate the interest rate necessary for \$760 to grow to \$980 in 4 years compounded continuously. Use the compound interest formula:  $A = Pe^{rt}$ , where A = final amount, P = starting amount, r = interest rate, and t = time in years.
- 12. Solve the system by substitution:  $y = 2x^2 3x + 4$

13. A river flows at 384 cfs at 6:00 am, then at 786 cfs at 11:00 am. Use the exponential function:  $A = A_0 e^{kt}$ , where A = final amount,  $A_0$  = initial amount, k = rate of change and t = time in hours. Find a function for A(t) and use it to find the time the river will reach 1200 cfs.

14. Solve the system by elimination:
$$-2x - 3y + 5z = 13$$
 $4x - 2y - 6z = 2$  $3x + 4y - z = 1$ 

Solutions: **1.** a.  $y = -\frac{4}{3}x + 5$  b.  $-\frac{4}{3}$  c. (0,5) d.  $\left(3\frac{3}{4}, 0\right)$  e.

**2.** 
$$y = \frac{2}{5}x + 6$$
 **3.** a.  $y = 10.24x - 42.56$  b.  $y = 10.18x - 39.98$  c. 591 lbs. d. 81 feet **4.**  $x = 2.4$  **5.**  $\frac{58}{85}$   
**6.**  $(x + 4)^2 + (y + 3)^2 = 49$  **7.**  $(x - 4)^2 + (y + 7)^2 = 36$  **8.**  $\frac{(x - 6)^2}{49} + \frac{(y - 2)^2}{81} = 1$  **9.**  $x = -4$  &  $\frac{5 \pm \sqrt{33}}{2}$   
**10.**  $x \approx 8.75$  **11.**  $r \approx 6.4\%$  **12.**  $(2,6)$  &  $(3,13)$  **13.**  $A(t) = 384e^{.143t}$   $t \approx 7.97$  or 1:58 pm **14.**  $(4, -2, 3)$ 

